TITANIUM, ZIRCONIUM AND HAFNIUM * ANNUAL SURVEY COVERING THE YEAR 1979

JAY A. LABINGER Department of Chemistry, University of Notre Dame Notre Dame, IN 46556 (USA)

This survey is organized by ligand type, with complexes containing more than one class of ligand listed according to the feature of primary interest. The abbreviations Cp (for n^5 -cyclopentadienyl) and Cp' (for any ring-substituted cyclopentadienyl group) are used throughout. Dates cited in parentheses indicate a reference to material discussed in the survey for that year.

A Japanese-language review on organozirconium compounds has been cited in Chemical Abstracts (1).

CARBONYL AND DINITROGEN COMPLEXES

In a paper presenting the design for a high-pressure reactor and infrared/electronic spectroscopy cell, the reaction of $\text{TiCl}_3(\text{PEt}_3)_2$ with CO (800 psi) gave a new peak at 1875 cm⁻¹ assigned as $\text{TiCl}_3(\text{CO})(\text{PEt}_3)_2$; the isolated (not pure) product loses CO to revert to starting material (2).

The crystal structure of $Cp_2Hf(CO)_2$ has been determined; it is quite similar to that of the Ti analog (1977) with expected differences in bond lengths; also the Cp rings are staggered for Hf and eclipsed for Ti. One of the CO's can be replaced by phosphine ligands PPh₃, PMe₃, Ph₂PCH₂CH₂PPh₂ (only one end coordinates) and PF₃ (photochemically); with diphenylacetylene the hafniacyclopentadiene complex $Cp_2Hf(C_4Ph_4)$ forms (3). The ultraviolet photoelectron spectrum of $Cp_2Ti(CO)_2$ shows a lowest ionization at 6.35 eV, assigned to Ti 3d electrons (4).

The CO-reducing ability of group IV metal hydrides is clearly illustrated by the reaction of $(C_5^{Me}_5)_2^{2rH}_2$ with carbonyl complexes of other metals, even at -80° , to give zirconoxyalkylidene complexes:

^{*} Titanium, zirconium and hafnium, Annual Survey covering the year 1978 see J. Organometal. Chem., Vol. 180(1979)187-203.

where $L_n M = Cp_2 W$ or $Cp_2 NbH$. The crystal structure of the W complex was determined. Both products react with H_2 to give $Cp_2'ZrH(OCH_3)$ and $L_n MH_2$, thus achieving overall reduction of CO to methoxide; these reactions thus complement the reaction of $Cp_2'ZrH_2$ with CO (1976) and may be mechanistically relevant. The W complex also adds ethylene at 70° to give $Cp_2'Zr(Et)(OCHWCp_2)$ (5). A related reaction is the observation that Cp_2ZrHC1 slowly reduces $CpRe(NO)(PPh_3)(CHO)$ to $CpRe(NO)(PPh_3)(CH_3)$ (6).

 $Cp_2Ti(CO)_2$ reacts with CO_2 at 50° according to the stoichiometry:

4 $Cp_2Ti(CO)_2$ + 4 CO_2 ----- [($Cp_2Ti_2CO_3$]₂ + 10 CO

Labelling shows that the carbonato ligands, as well as two of the ten CO's, come from CO₂. A crystallographic determination gave the following structure:

The magnetic moment (1.70 per Ti) indicates no interaction between the four (formally) Ti(III) centers. An intermediate such as

was proposed; this is related to a product previously observed (1978) from the reaction of diphenylketene with $Cp_2Ti(CO)_2$ and could extrude CO to leave the carbonate moiety. In contrast, $Cp_2^{Zr}(CO)_2$ reacts with CO_2 at 74° to give $(Cp_2ZrO)_3$, whose structure (also determined crystallographically) contains a virtually

planar 6-membered $2r_3O_3$ ring, a trimer of the hypothetical "zirconyl" unit $Cp_2Zr=0$. Similarly, $(Cp_2TiCl)_2$ reacts with CO_2 at 90° to give $(Cp_2TiCl)_2O$ (7).

The crystal structure of $[Cp_2Ti(p-CH_3C_6H_4)]_2N_2$ has been determined; the molecule contains a linear M-N-N-M bridge, as in $(Cp_2'Ti)_2N_2$ and $[Cp_2'Zr(N_2)]_2N_2$ (1976). The N-N distance (1.162 Å) is virtually the same as in the above Ti(II) species (1.160 Å) but the Ti-N distance is considerably shorter (1.962 vs 2.017 Å). Coordination around Ti is fairly normal for a Cp_2MX_2 system; notably the Ti₂N₂ unit and both p-tolyl groups are all coplanar. It is suggested that the resulting interaction of the two Ti a₁ orbitals (both singly occupied) with the same π^* orbital of N₂ accounts for the observed diamagnetism of this Ti(III) complex (8).

A full paper on the reduction of $Cp_2 ZrCl (CH(SiMe_3)_2)$ with Na/Hg under N₂ has appeared. As communicated last year, the product is a paramagnetic monomer, $Cp_2 ZrR(N_2)$ (in contrast to the behavior of the analogous Ti system, see above); the appearance of equal hyperfine coupling to two N's in the ESR suggest a side-bonded n^2-N_2 ligand. N₂ is not displaced by PEt₃, but recrystallization leads to the analog of the above Ti complex, diamagnetic $(Cp_2 ZrR)_2 N_2$. Changing R or putting substituents on Cp generally results in no N₂ complex being formed at all (9).

The formation of naphthylamines from the system $\text{TiCl}_4/\text{Li}/\text{naph-thalene/N}_2$ has been examined. With Ti:Li:NpH = 1:50:6, about 1% NpNH_2 (α and β) and 73% NH_3 were obtained after hydrolysis. Addition of ligands such as PPh₃ or bipyridyl inhibited formation of NpNH₂ (but not NH₃) while causing some N₂ evolution, suggesting intact N₂ rather than a nitride species is an intermediate. Addition of some air during hydrolysis gives an increased yield of NpNH₂ (10). Reduction of N₂ by Cp₂TiCl₂/Li/NpH (as well as other metal salts) has been re-examined (11).

ALKYL AND RELATED COMPLEXES

An attempt to explain the reactivity of the Zr(IV) complexes, Cp_2^{ZrHR} , towards H_2 (see last year's survey) has been made using (extended Hückel) MO analysis. The addition of $H_2(D_2)$ to $Cp_2^{ZrH_2}$, leading to H-D exchange, has a low calculated activation barrier even though the initial complex is d^0 ; the suggested mechanism is not a true oxidative addition but involves a sort of allylic transition state:

The energy difference between the two intermediates ("inside" vs. "out side" coordination of the H_2 molecule) is also calculated to be small. For $Cp_2ZrH(CH_3)$ attack outside CH_3 is preferred, which does not agree with the observation that H-D exchange is faster than H_2^{-1} induced reductive elimination (1978) (12).

If reductive elimination from $Cp_2 2rH(CH_2 C_6 H_{11})$ is induced by phosphine ligands, Zr(II) products $Cp_2 2rL_2$ (L = PMePh₂, PMe₂Ph, or $L_2 = Me_2 PCH_2 CH_2 PMe_2$) are obtained, although only the last was isolated. These react (at room temperature) with CO to give ($Cp_2 2r(CO)L$; with RCCR or with octa-1,7-diene to give metallacycles (the latter giving an equal mixture of <u>cis</u>- and <u>trans</u>-1,2-dimethylcyclohexane on hydrolysis), and with alkyl halides to give $Cp_2 2rRX$. Arenes can be metallated (the reverse of reductive elimination) as indicated by the trapping of metallated toluene by acetone:

while slow decomposition is observed in hydrocarbon solution, giving a product resulting from Cp metallation:

The same product (characterized by 13 C NMR) was also obtained from "Cp₂Zr" (the product of reductive elimination from Cp₂ZrHR) plus Cp₂ZrL₂ (13).

Two further studies on thermal decomposition of deuteriumlabelled Cp₂TiMe₂ (1976) have appeared. In one, two stages of decomposition were identified; during the first (~ 2 hours at 340 K) about 10% of the starting material is consumed; darkening but no precipitate was observed; and all of the hydrogens in the evolved methane comes from methyl groups. Subsequently the solution becomes opaque, all the starting material is consumed, and substantial scrambling of label is found in the methane. It was suggested that in the first stage loss of methane is strictly intramolecular and involves (formally, at least) α -hydrogen abstraction; a very large isotope effect was found (for Ti(CH₃)₂ vs. Ti(CD₃)₂). In the second stage, ring hydrogens must exchange with methyl hydrogens, possibly via methylene intermediates, e.g.

$$(C_5H_5)_2$$
TiCH₂ \leftarrow $(C_5H_5)(C_5H_4)$ TiCH₃

Of note is the importance of the large isotope effect since this strongly affects product isotopic purity; for example, $(C_5D_5)_2Ti(CD_3)_2$ gives (in the early stage) equal amounts of CD_3H and CD_4 ; the former comes from the H in the CD_3 groups (about 1%) which is preferentially eliminated (14). In the other study (involving $(C_5D_5)_2MR_2$, M = Ti, Zr; R = Me, Ph) two stages were not distinguished, but the same conclusions regarding ring-alkyl hydrogen exchange for the overall process were reached. Furthermore, this exchange was shown to be intermolecular as well; decomposition of Cp_2MR_2 in the presence of $(C_5D_5)_2V$ led to vanadocene-d_x where x = 0-10 (15).

Decomposition of $Cp_2TiEtC1$, thermally (80-140[°]) or photochemically, gives C_2H_4 , C_2H_6 and traces of C_4H_{10} ; the first two are roughly equal for the neat compound but much more C_2H_6 is obtained in hydrocarbon solution; in toluene-d₈ some C_2H_5D is obtained. The proposed mechanism involves homolysis to give Et·, which abstracts H from the ethyl group of the starting compound to give $C_2H_6 + C_2H_4$, or from solvent to give only C_2H_6 (16). The proposed benzyne intermediate from decomposition of Cp_2ZrPh_2 can be trapped with olefins to give zirconaindanes:

The reversibility of the last two steps is shown by the fact that the products exchange with R'CH=CH₂; a similar equilibrium between (simple) metallacycles and bis(olefin) complexes has been inferred for Ti (1978). The zirconaindanes decompose above 100° to PhCH(CH₃)R, with the additional hydrogens needed apparently coming from the Cp rings (17). Decomposition of titanium neophyls, prepared from PhMe₂CCH₂MgCl and TiCl₄ at -70°, give mostly (PhMe₂CCH₂)₂ and PhCMe₃; the absence of rearranged species shows radicals are not involved (18). Symmetry arguments for such reactions indicate a d⁰ alkyl should <u>not</u> give R₂ formation; a cluster intermediate was suggested to account for the observation of R₂ in the above Ti system (19).

Two groups have examined one-electron reduction of Cp_2MR_2 . Reaction of Cp_2MR_2 (M = Ti, Zr; R = Me, PhCH₂, Me₃CCH₂, Me₃SiCH₂, Ph₂CH) with sodium naphthalenide gives $Cp_2MR_2^{-}$, characterized by ESR; the Hf analogs are much less stable and ESR studies are plagued by small amounts of Zr impurities (20). Cp_2TiR_2 (R = Me_3SiCH₂; or $R_2 = CH_2(SiMe_2)X(SiMe_2)CH_2$, where X = CH₂ or O) plus potassium in DME/THF gives $Cp_2TiR_2^{-}$ which have half-lives of 20 min or more at room temperature. BuLi at -90° can also be used as reductant, but at room temperature an ESR signal assigned to $Cp_2TiBu_2^{-}$ grows in, indicating alkyl group exchange (21). The reaction of Cp_2ZrR_2 with R'Li (R,R' = Me, Ph) gives alkane, CpLi and $CpZrR_2$ or ZrR_2 (depending upon how much RLi is used); the mechanism which was proposed is:

$$Cp_2ZrR_2 + R'Li \rightarrow (Cp_2ZrR_2R')Li \rightarrow (R,R')H + CpZr(R,R')_2 + CpLi \rightarrow etc.$$

but the source of the hydrogen atoms was not accounted for (22). Cp_2TiPh_2 reacts with $ZnPh_2$ at 60° by the following stoichiometry:

The organometallic product gives 1 mole each of H₂ and PhH on protonolysis, and 1 mole of phenylcyclopentadiene on cleavage with HOAC; the IR suggests a fulvalenide ligand, implying the structure

An apparently analogous species (without the ring-phenyl) was obtained from $(C_{10}H_8)(CpTiH)_2$ plus $2nPh_2$ (23). Protonolysis of Ti $(CH_2Ph)_4$ with R_fCOOH $(R_f = C_2F_5, C_3F_7)$ gives $(PhCH_2)_3Ti(O_2CR_f)$; only one benzyl group is cleaved even with excess acid (24).

A number of studies on insertion reactions have appeared. Cp₂TiR reacts with isonitriles R'NC (R = o-tolyl, 2,6-dimethylphenyl) to give adducts $Cp_2TiR(CNR')$ which are stable for R = Cl, C_6F_5 ; for R = C_6H_5 , o-tolyl these rearrange to give $Cp_2Ti(CR=NR')$ whose molecular weight and magnetic properties are in accord with monomeric Ti(III) complexes. These are oxidized by I, or PhSSPh to Cp₂TiX(CR=NR') for which IR and ¹³C NMR suggest n²-coordination of the iminoacyl ligand (25). In the Ti(III) species, IR alone cannot give unequivocal indication of coordination mode; a crystal structure on $Cp_2Ti(CPh=N(2,6-C_6H_5Me_2))$ shows n^2 -bonding, with bond lengths C-N = 1.28, Ti-C = 2.096, Ti-N = 2.149 Å (26). The same Cp₂TiR species react with CO, giving adducts (C₅Me₅)₂TiCl(CO) (dimerization in simple Cp_{TiCl} prevents reaction) and $Cp_{Ti}(C_{6}F_{5})(CO)$, and acyl Cp₂Ti(COR) (R = o-tolyl); the latter is oxidized to Ti(IV) acyls by HCl or PhSSPh. IR CO stretching frequencies in both oxidation states (1575 cm⁻¹ for Ti(IV), 1470 cm⁻¹ for Ti(III) indicate η^2 -coordination. For R = Ph the reaction is more complex; treatment of the product with HCl gives some benzil (27).

Zirconium alkyls $Cp_2 ZrClR$ (R = $CH_2 CMe_3$, $CH_2 SiMe_3$, $CH(SiMe_3)_2$) give insertion products, acyls or iminoacyls, with CO or (p-tolyl)NC respectively; all appear to have n^2 -ligands. With mixed alkyls such as $Cp_2 Zr(CH(SiMe_3)_2)Me$ only the <u>bulkier</u> alkyl group undergoes insertion (28). With C_5Me_5 systems, $Cp_2'ZrMe_2$ gives analogous isonitrile insertion products $Cp_2'ZrMe(CMe=NR)$. Insertion into Zr-H is also found: $Cp_2'ZrH_2$ reacts with MeNC at -65° to give $Cp_2'ZrH(CH=NMe)$ which is hydrogenated at 25° to $Cp_2'ZrH(NMe_2)$. With $(2,6-C_6H_3Me_2)NC$ the analog is obtained at low temperature, but at room temperature a second insertion gives an n^2 -imine complex which at higher temperatures metallates a ring methyl group:

Reaction of $(Cp_2' ZrN_2)_2N_2$ with RNC gives $Cp_2' Zr(CNR)_2$. These reactions are all reminiscent of CO chemistry in this system (1978) (29). Insertion into metal-halide bonds is also possible; MCl_4 (M = Ti, Hf) plus (t-butyl)NC gives $[MCl_3(CNR)(CCl=NR)]_2$. One or both of the RNC groups can be replaced by chelators, suggesting insertion is reversible (30).

In examining the stereochemistry at metal during SO2 insertions, it was first found that $Cp_2TiMe(C_6F_5)$ reacts with SO₂ to give two isomers of $Cp_2Ti(C_6F_5)(SO_2Me)$. The major species shows a doubling of Cp signals in the NMR, which coalesce at 78⁰; this was assigned at the O-sulfinate, with NMR splitting due to the chiral center at S, where inversion becomes rapid at elevated temperature. The minor isomer (~ 10%) is assigned as the 0, 0-sulfinate; its NMR signals remain distinct even at 78°. CpCp'Ti(C₆F₅)(SO₂Me)(Cp' = $c_{5H_4}CMe_3$) exists as two diastereomers, as expected since there are two chiral centers, but these could not be separated, and rapidly interconvert at 78° (31). With an additional element of chirality, $CpCp"Ti(C_6F_5)Me$ ($Cp" = C_5H_4CHMePh$) can be separated into its two diastereomers (1976); either pure diastereomer reacts with SO2 to give a single isomer of CpCp"Ti(C_6F_5)(SO₂Me) which is cleaved by HCl to give a single isomer of $CpCp"Ti(C_6F_5)Cl;$ NMR data indicate that stereochemistry at Ti is retained in both steps. Along with the previous finding of retention at C in a related Zr system (1975), this result implies a 4-center transition state for insertion.

(Both a preliminary (32) and full (33) report of this work appeared.)

The titanium methylene compound $\text{Cp}_2\text{TiCH}_2\text{AlClMe}_2$ (1978) undergoes metathesis-type reactions; e.g. with ${}^{13}\text{CH}_2=\text{CMe}_2$ label is incorporated into the Ti species (about 30 hr. at 52° are required to reach equilibrium), and ${}^{13}\text{CH}_2=\text{CMe}_2$ exchanges label with methylenecyclohexane in the presence of the compound. These results, as well as olefin homologation and cyclopropanation (1978) are interpreted in terms of a titanacyclobutane intermediate; with PhC=CPh, a stable metallacycle is formed (34).

Reaction of Cp_2TiCl with $LiAlMe_4$ gives a methyl-bridged compound, $Cp_2Ti(Me_2AlMe_2)$. Related reactions include Cp_2TiCl with Al_2Me_6 , giving $Cp_2Ti(AlMe_3Cl)$ of uncertain structure; with $NaAlH_2Me_2$, giving $Cp_2Ti(H_2AlMe_2)$ (by ESR); and Cp_2TiCl_2 with $LiAlMe_4$, giving Cp_2TiMe_2 (35).

Treatment of MCl_4 (M = Zr, Hf) with 3 moles of $LiN(SiMe_3)_2$ followed by LiMe gives MeM(N(SiMe3)2)3, surprisingly stable to air, water, acid and CO2, probably for steric reasons (36). With only 2 equivalents of the amide, followed by R_2Mg (R = Me, Et, CH₂SiMe₃), R₂M(SiMe₃)₂)₂ can be obtained; these undergo CO₂ insertion to give carbamates, $R_2Hf(O_2CN(SiMe_3)_2)_2$, and react with (t-butyl)NC to give $((Me_3Si)_2N)_2Hf(CR=NBut)_2$ (37). Monoalkenyl complexes $MCl_3(CPh=CMe_2)$ were prepared from MCl_4 (M = Ti, Zr, Hf) and Me₂Sn(CPh=CMe₂); only the Ti compound was isolated (38). Lithiation of 1,1'-dichloroferrocene followed by reaction with Cp₂TiCl₂ gives Cp₂Ti(l,l'-dichloroferrocen-2-yl)₂ as a roughly equal mixture of dl and meso isomers; these were separated by extraction (the dl is more soluble) (38). Tolylhafnium complexes $Cp_2Hf(o, m or p-tolyl)_2$ were obtained from Cp_2HfCl_2 and the corresponding lithium reagent (40). Benzylmagnesium chloride plus (Cp₂2rCl)₂O gives (Cp₂2r(CH₂Ph))₂O (41). A patent covering preparation of titanacycles Cp₂Ti(CH₂XCH₂) (X=(SiMe₂)CH₂(SiMe₂), (SiMe₂)O(SiMe₂), (SiMe₂)₃, (SiMe₂)₂, SiMe₂) has been issued (42).

Alkynyl complexes $Cp_2M(CCR)_2$ ($Cp = C_5H_5$, C_5H_4Me ; R = Ph, cyclo-C₆H₁₁, n-C₆H₁₃, Ph₂CHCH₂, Ph₂C(CN)CH₂) have been prepared for M = Ti (43) and Zr (44). Cp₂Ti(CCPh)₂ reacts with Pt(C₂H₄)₂(PR₃) to give Cp₂Ti(CCPh)₂Pt(PR₃); spectral properties suggest the two acetylenic groups are η^2 -coordinated to Pt:

The acetylenic carbons show very different 13 C signals -- one (assigned as Ti-bonded) is at much lower field and is only weakly coupled to 31 P and 195 Pt (45).

Ab initio calculations were performed for TiH_4 and TiMe_4 ; the calculated Ti-C distance in the latter (2.10 Å) is close to that previously found for $\text{Ti}(\text{CH}_2\text{Ph})_4$ (2.13 Å) (46). An extended Hückel study on metallacyclopentadienes, including $\text{Cp}_2\text{Ti}(\text{CH})_4$, suggests little difference between this d⁰ species and complexes which are not d⁰ (47). Mass spectral studies on the perfluorotitanofluorene:

show loss of Cp and HF as important processes; the largest peak corresponds to CpTiF⁺ (48). A full paper on ¹³C relaxation mechanisms in methyl complexes (1978) includes Cp₂ZrMe₂ (49).

CYCLOPENTADIENYL COMPLEXES

In contrast to the Ti analog (1976), low-temperature reduction of $Cp_2^{ZrCl_2}$ with potassium naphthalenide gives a naphthyl product, $(Cp_2^{Zr})_2(C_{10}H_7)H$, whose crystal structure shows a bridging $\eta^1:\eta^2$ - naphthyl group:

The bridging H was not located but its presence is shown by NMR and the reaction with CH_3I to give 1 mole of CH_4 . The complex is inert to N₂; with H₂ it gives naphthalene and Cp_2ZrH_2 (50).

The crystal structures of ring-linked Cp_2TiCl_2 species, $(CH_2)_n (C_5H_4)_2TiCl_2$ (n=1 and 2; the latter is a new compound) were determined and compared to those of previously determined $(CH_2)_3 (C_5H_4)_2TiCl_2$ and Cp_2TiCl_2 . The methylene bridged species (n=1) shows substantial strain; the C-C-C angle at the methylene is only 97° and the exo-C-C bond on each ring is bent well out of the ring plane (16°). The dihedral angle between the two ring planes, 65° , is a compromise between preferred values imposed by the methylene bridge (109°) and the metal geometry (49.5° in unbridged Cp₂TiCl₂); in contrast, the ethylene-bridged compound is relatively strain-free with a ring dihedral angle of 51.8° . ¹H and ¹³C NMR spectra of the three bridged species as well as the corresponding (Cp-Cp)TiMe₂ and $-(CO)_2$ compounds are reported; an interpretation of chemical shift differences between the ring 2and 3-positions based on electronic distributions resulting from geometry is offered (51).

A summary of preparations and reactions of Cp_2ZrClY , where Y = alkoxide, carboxylate, N=CHR (derived from RCN) and Cp ligands, includes the new complex (MeCp)₄Zr (52). Preparative details for Cp_2ZrH_2 and Cp_2ZrHCl are given in <u>Inorganic Syntheses</u> (53). Improved syntheses of (MeCp)₂TiY₂ (X = F, Cl, Br, I) involve making the chloride from TiCl₄ and CpTl, followed by halide exchange with NH₄F, BBr₃ or BI₃ (54). Reaction of Cp_2Pb with TiCl₄ gives a mixture of Cp_2TiCl_2 , CpTiCl₃ and CpPbCl (55).

The crystal structures of $Cp_2^{M}(NCO)_2$ (M = Ti, Zr) show M-NCO linkages as earlier deduced from dipole moment measurements; they have typical $Cp_2^{MX_2}$ geometry. IR suggests the Hf analog has the same structure (56). Reaction of $CpTi(OR)_3$ with phenyl isocyanate gives $CpTi(OR)_{3-n}(NPhCO_2R)_n$; n=1-3 (57). PhNCO with $Cp_2Ti(CO)_2$ gives several interesting structures containing the diphenylureylene moiety. With excess PhNCO at room temperature a trimeric complex is obtained, whose crystal structure is:

From an equimolar reaction at 60° a dimer is obtained, whose

47

Heating the trimer to 90° gives the dimer plus a monomeric species, suggested to have structure

The latter is also obtained from the trimer by reaction with phenanthrenequinone (along with $Cp_2Ti(phen)$), and reacts with $Cp_2Ti(CO)_2$ to give the dimer. The monomer is diamagnetic as expected for Ti(IV); the dimer shows a magnetic moment of 1.73 B.M. per Ti (2 Ti(III)'s); oxidation state formulation in the trimer is unclear (58).

In related reactions, Cp₂Ti(CO)₂ plus O=C(CO₂Et)₂ gives

The pinacol-like C-C bond formation may be contrasted with the products obtained from $\text{Cp}_2\text{Ti}(\text{CO})_2$ and CO_2 (vide supra) or diphenyl-ketene (1978). Similarly, $\text{Cp}_2\text{Ti}(\text{CO})_2$ reacts with p-tolylcarbo-dimide to give:

Both structures were determined crystallographically (59).

Dibenzoylmethane reacts with $(Cp_2ZrCl)_2O$ to give the β -diketonate complexes $Cp_2ZrCl(PhCOCHCOPh)$ and $CpZrCl(PhCOCHCOPh)_2$. Reaction of the former with water gives $(Cp_2Zr(PhCOCHCOPh))_2O$, which when treated with more diketone leads to CpZr (PhCOCHCOPh)₃ (60). Similarly, Cp₂MCl₂ (M = Ti, Zr, Hf) plus ferrocenoylacetone yields CpMCl(FcCOCHCOCH₃)₂ (61). Fluoroalkoxy compounds CpTiCl(OR)₂, CpTi(OR)₃ and CpTi(OR)₂Me (R = CH₂CF₃) have been prepared; the last two initiate polymerization of methyl methacrylate (62). The aqueous chemistry of the Cp₂Ti²⁺ fragment has been investigated; depending on pH and halide x species Cp₂Ti(OH₂)₂²⁺, Cp₂Ti(OH)(OH₂)⁺, (Cp₂Ti(OH))₂O and (Cp₂TiX)₂O were detected (63). The polyanion CpTiMo₅O₁₈³⁻ was obtained from Cp₂TiCl₂ and Mo₂O₇²⁻; its structure was established by ¹⁷O NMR (64). In the presence of moisture Cp₂Zr(SPh)₂ led to crystallization of (Cp₂Zr(SPh))₂O, whose X-ray structure was determined. The Zr-O-Zr angle is 165.8°; the S-Zr-O angles (98.7 and 103.3°) are in the range expected for a d⁰ Cp₂Mx₂ species (65).

Complexes Cp_2 'Ti(NCS)₂ were prepared, where Cp' is un-, monoor disubstituted Cp; IR suggests <u>N</u>-coordination (66). Cp_2 TiCl(NCS) reacts with NaOAr (Ar = aryl group) to give Cp_2 Ti(NCS)(OAr), although symmetrization is a problem (67). Cp_2 Ti(CO)₂ adds (SeCN)₂ to give Cp_2 Ti(NCSe)₂ and X(CN)₂ to give Cp_2 Ti(CN)(NCX) (X = S, Se) (68). Group IVb derivatives Cp_2 MCl(GeEt₃) (M = Ti, Zr) were prepared from Cp_2 MCl₂ and LiGeEt₃; attempts to make the Sn analogs or to make Cp_2 M(GeEt₃)₂ led only to reduction to lower-valent species (69).

Aryldithiocarbamate complexes $Cp_2Ti(S_2CNHAr)_2$ (70) and $(MeCp)_2TiCl(S_2CNHAr)$ (71) contain bidentate dtc ligands, as do all previous analogs examined. Several zirconium complexes of sulfur-containing Schiff bases were prepared, including Cp_2^{ZrCL} and $Cp_2^{ZrL}_2$ (LH = R₂C=N-N=C(SH)(SMe)), which appear to be <u>S</u>,<u>N</u>-coordinated; and Cp_2^{ZrL} (L'H₂ = <u>O</u>-HOC₆H₄CH=N-N=C(SH)(SMe)) which is <u>O</u>,<u>S</u>,<u>N</u>-coordinated (by IR) (72).

In further studies on chirality, possible configurational stability in CpCp'TiX was examined by reducing diastereoisomerically pure CpCp'TiXCl (Cp' = $C_5H_4CHMePh$; X = C_6F_5 or OAr) with Al or Zr metal and reoxidizing with CCl₄. In both cases an equal mixture of diastereomers was obtained, showing that the intermediate Ti(III) has no configurational identity and, furthermore, that no induction occurs in reoxidation. With the chiral bridged species, $(C_5H_4CHMeCH_2CH_2C_5H_4)$ TiCl(OAr), induction was observed, in that either starting diastereomer led to the same <u>unequal</u> mixture of isomers after reoxidation (73). Attempts to make chiral complexes with only one Cp involved treating CpTiCl₂ with diols; for example, Cp'TiCl₂ (Cp = $C_5H_4CHMePh$) plus 4-methylbenzene-1,2-dithiol, followed by CCl_4 , gave a mixture of diastereomers of Cp'TiCl(S-S), which however could not be separated (74). Reaction of 1,3dibromopropane with $C_5H_4CMe_3$, TiCl_3, and HCl in succession gave $(CH_2)_3(C_5H_3CMe_3)_2TiCl_2$; NMR indicates only one product was formed, the dl isomer with both rings 1,3-disubstituted. Attempted resolution with $(\underline{S})-(-)-1,1'-bi-2$ -naphthol gave only one diastereomer; models suggest only the $\underline{S},\underline{S}$ -isomer of the dichloride can form an adduct with the \underline{S} -diol. Cleavage of the latter with HCl gives back a highly optically active dichloride, indicating configurational stability during these interconversions (75).

A phosphine ligand-substituted Cp ligand was prepared for the purpose of designing mixed bimetallic compounds by the following route:

Ph2PCH2Li + Me2SiCl2 --- Ph2PCH2SiMe2Cl LiCp Ph2PCH2SiMe2C5H5

After deprotonation with BuLi, the anion was used to make $Cp_2'ZrCl_2$ and $CpCp'ZrCl_2$. The latter reacts with $Fe_2(CO)_q$ to give (76).

Group IVb substituted cyclopentadienes were used to make a variety of substituted Cp titanum compounds, e.g.

 $C_{5}H_{4}(EMe_{2})(MMe_{3}) + TiCl_{4} \longrightarrow (C_{5}H_{4}EMe_{2})TiCl_{3} + Me_{3}MCl_{3}$

E = As, Sb; M = Si, Sn

Also prepared were $(C_5H_4MMe_3)TiCl_3$ (M = Si, Ge, Sn); $(C_5H_3(SiMe_3)_2) - TiCl_3$ (77); $(C_5H_4BX_2)TiCl_3$ (X = Cl, Br, OEt, Me) and $(C_5H_3(BX_2)(SiMe_3))TiCl_3$ (78).

 Cp_2 Ti(bipyridyl), previously known to be weakly paramagnetic, has been studied by ESR, magnetic susceptibility and theoretical methods. The first two indicate that paramagnetism is due to a thermally accessible (~600 cm⁻¹ above the ground state) triplet excited state; preliminary X-ray data indicate there are no M-M interactions. Calculations (Fenske-Hall type) show that the bipyridyl ligand has no π -acceptor orbital of the right symmetry to stabilize the ground state, but has a π^* orbital lying not far above the metal orbitals in energy, suggesting the excited state should be an MLCT state, Ti(III)-bipy⁻. In agreement, the zerofield splitting in the ESR can be used to calculate a separation of 3.5 Å between electrons in the triplet. The oxidized compound, $Cp_2Ti(bipy)^+PF_6^-$, behaves as a normal d¹ complex (79).

Cp_Ti adducts of pyrimidine ligands and analogs:

where $M = (MeCp)_2Ti$ and X,Y = (variously) 0,S,Se have been prepared; the crystal structure of the 2,4-dithiopyrimidine adduct was determined (80). All show weak exchange properties, either antiferromagnetic or ferromagnetic (81).

Photolysis of Cp_2TiCl_2 gives Ti(III) ESR signals; in the presence of the spin trap nitrosodurene, $Cp(Ar)NO \cdot$ is formed; in ROH $CpTi(OR)Cl_2$ is obtained (all quantum yields are about 0.35). The common first step, $Cp_2TiCl_2 \rightarrow Cp \cdot + CpTiCl_2$ was proposed (82). Treatment of Cp_2ZrCl_2 with D_2 and $Mn_2(CO)_{10}$ gave no ring deuteration, in contrast to Cp_2WH_2 (83). Cp_2TiCl_2 was found to have antitumor activity (84).

OTHER π -BONDED COMPLEXES

The mechanism of photoinduced decomposition of η^3 -allyl complexes has been investigated using CIDNP; both Hf(allyl)₄ and $(C_8H_8)M(allyl)_2$ (M = Zr, Hf), on irradiation, show polarization for the signals due to the product 1,5-hexadiene. Zr(allyl)₄ shows a different pattern as well as polarization in starting complex signals. A possible mechanism is

 $M(allyl)_2 \xrightarrow{hv} M(allyl) \cdot + allyl \cdot - + hexadiene$

with the reversal of the first step significant only for Zr(allyl)₄. No CIDNP was observed under thermal conditions (85).

Reduction of $\operatorname{ZrCl}_4(\operatorname{dmpe})_2$ with Na/Hg in the presence of butadiene gives a Zr(0) complex, $(\operatorname{Zr}(C_4^{H_6})_2(\operatorname{dmpe}))_2(\mu-\operatorname{dmpe})$ which (by NMR) is in equilibrium, in solution, with $\operatorname{Zr}(C_4^{H_6})_2(\operatorname{dmpe})$ and free dmpe. Reaction with CO at -45° precipitates $\operatorname{Zr}(C_4^{H_6})_2(\operatorname{dmpe})$ (CO) which loses CO at room temperature in solution; the resulting $\operatorname{Zr}(C_4^{H_6})_2(\operatorname{dmpe})$ picks up other ligands to give $\operatorname{Zr}(C_4^{H_6})_2(\operatorname{dmpe})$ L. NMR was used to propose structures; the bonding of butadiene appears essentially the same as in complexes of later transition metals. Reaction with H_2 gives metallic Zr and butane, while slow catalytic hydrogenation is observed with added olefin (86). Cleavage with HCl gives butenes, and exposure to O_2 liberates C_4H_6 . Reduction of $ZrCl_4(dmpe)_2$ in the presence of 1,3-cyclohexadiene (a diene with allylic hydrogens, in contrast to C_4H_6) gives $ZrH(n^5-C_6H_7)(dmpe)_2$, identified spectroscopically and by formation of HD with DCl (the Zr-H was not observed by NMR or IR). Thermal decomposition gives benzene and H_2 ; the compound catalyzes disproportionation of C_6H_8 (87). The electronic structure of πi^{3+} complexes of butadiene and propylene have been studied (88).

Another Zr(0) complex was prepared by cocondensing Zr (also Hf) vapor with an arene (benzene or toluene) and PMe_3 giving (arene)₂M(PMe₃), highly sensitive to air and water as well as apparently reacting with N₂ (89). Vaporization of Ti into a poly(methylphenylsiloxane) gave rise to visible absorption peaks assigned to polymer-supported bis(arene)Ti species; additional metal leads to small Ti clusters or to mixed Cr-Ti clusters stabilized by interaction with the polymer (90).

The crystal structure of (C₆Me₆)TiAl₂Cl₈ (benzene solvate) shows a pyramidal structure

The ring C-C distances are irregular, but the ring is reasonably planar and the Ti lies over the center; the Ti-ring center distance (2.06 Å) is long compared to Cp-Ti structures (91). $(C_{6}H_{6})Ti(AlX_{4})_{2}$ (X = Cl, Br) reacts with cyclopentadiene to give a Ti(III) ESR signal, assigned to CpTi(AlX_{4})_{2}. With excess $C_{5}H_{6}$, the known signal of Cp₂Ti(AlX_{4}) is obtained. The first reaction corresponds to (arene)Ti(II) + CpH \longrightarrow CpTi(III) + arene + $\frac{1}{2}H_{2}$, although less than the expected amount of H_{2} was measured (92). $(C_{6}H_{5}Me)Ti(AlCl_{4})_{2}$ is a poor catalyst for hydrogenation of benzene at 125° ; $(C_{6}H_{5}Me)_{2}Ti$ is completely inactive at 20° (93). Colored complexes between arenes $C_{6}H_{6-n}Me_{n}$ (n=0-3) or phenols and Ti(IV) can be observed in $H_{2}SO_{4}$ (94). An improved ESR study on (C_8H_8) TiCp (and the indenyl analog) shows hyperfine coupling to both sets of ring protons as well as to Ti; earlier studies had problems of impurities and no hyperfine was observed. The absorption spectrum was also determined and compared with theoretical studies (95).

Titanium-intercalated graphite, C_{32} Ti, was prepared from C_8^K and Ti(OPrⁱ)₄; X-ray analysis shows a mixture of two stages with a Ti layer between every two C layers or after every fourth C layer, respectively; the Ti-containing layers are 5.6 A thick (96).

APPLICATIONS IN SYNTHESIS AND CATALYSIS

A full paper has appeared on the use of hydrozirconation followed by transfer of the alkyl (or alkenyl) group to AlCl₃ for C-C bond formation (1977); reaction of the resulting RAICl₂ with R'COCl gives RCOR'. Alkenyls transmetallate faster than alkyls; retention at C is found. Reaction of $Cp_2ZrCl(COR)$ with AlCl₃ gives (RCO)AlCl₂ which reacts with R'COCl to give some RCOCOR' but mostly RCHClO₂CR' (97). Preparation of Cp_2ZrHCl by hydrogenation of Cp_2ZrCl_2 was disclosed in a patent (98).

Carboalumination of alkynes can be mediated by group IV metals; RCECH plus excess AlMe, in the presence of Cp2rCl2 (1 equivalent per acetylene), followed by iodination, gives E-R(Me)C=CHI, in good yield (70-85%) and excellent regio- and stereospecificity (≥ 97% isomerically pure). Olefinic double bonds in R (conjugated or remote) do not interfere (99). A reinvestigation of the reaction of RC=CSiMe₃ with R'AlCl₂/Cp₂TiCl₂ followed by D₂O shows that RR'C=CDSiMe, is formed with 95% net cis addition and complete deuteration; however, if amines or THF are added before deuterolysis a mixture of isomers and little or no deuteration are found, indicating C-M bond breaking and H-abstraction from solvent occur (100). Cp₂TiCl₂ (or (MeCp)₂TiCl₂) catalyzes the reaction of HO(CH₂)_nC=CH with Et₂AlCl, giving HO(CH₂)_nC(Et)=CH₂ and E-HO(CH₂)_nCH=CHEt; regioselectivity is relatively low. With internal alkynes nearly stoichiometric amounts of Ti complex are required for good yields (101).

The reaction of olefins CH_2 =CHR with Cp_2TiCl_2 and AlR_3 ' (relative amounts 1:2:2) gives CH_2 =CRR'. The mechanism is unclear but is suggested to be related to Ziegler-Natta polymerization; alkylation of Ti; insertion of olefin to give Ti-CH_2-CHRR'; β -hydride elimination to give disubstituted olefin. R can include a Br, OH or ester functionality without interference (102).

Catalyzed hydrometallation continues to attract interest.

 Cp_2TiCl_2 is the best catalyst (as determined by yield and amount of deuteration after D_2O quenching) for the addition of $(i-Pr_2N)_2AlH$ to olefins; TiCl_3 and TiCl_4 give good yields but lower D content. With internal olefins isomerization occurs: iodination gives 1-iodoalkanes. 1,5-hexadiene gives hex-1-ene and hexane in THF but methylcyclopentane in benzene, suggesting a vacant site on Al (blocked by THF) is required for cyclization (103). Alkynes undergo similar reactions; internal alkynes behave cleanly but terminal alkynes give substantial amounts of alkane, ascribed both to double addition and to catalyst decomposition producing H₂ which hydrogenates double bonds (104). The combination of Cp_2TiCl_2 (as well as $2i(O-i-Pr)_4$) with $AlH_3 \cdot NMe_3$, $(Me_2N)AlH_2$ or $(HAlNR)_n$ gives olefin hydrogenation catalysts (105). Cp_2TiCl_2 catalyzes hydroboration of olefins by $LiBH_4$ (106).

The systems Cp_2TiCl_2 and $CpTiCl_3$ plus $LiAlH_4$ (in varying ratios) have been studied by ESR and calorimetric titration; a variety of species were identified. Most interesting is the 1:1 product of Cp_2TiCl_2 plus $LiAlH_4$, which shows a 17-line ESR spectrum tentatively ascribed to

 $C_{P_2Ti} \xrightarrow{H}_{H} \xrightarrow{Al} \xrightarrow{Cl}_{H}_{H} \xrightarrow{TiCp_2}_{H}$

An olefin hydrogenation catalyst was obtained with 2:1 LiAlH_4 / Cp₂TiCl₂ (107,108). Reaction of chiral Cp₂'TiCl₂ (Cp' = menthylor neomenthyl C₅H₄) with Red-al gives catalysts which hydrogenate CH₂=CEtPh with 7-15% optical yield (109).

Polymer-supported catalysts have been prepared: TiCl_4 on silica gel, or polymer-attached Cp_2TiCl_2 , catalyze olefin hydroalumination by LiAlH_4 (110). CpTiCl_3 attaches to alumina (1 Ti per surface OH); reduction with BuLi gives a Ti(III) species (by ESR) which catalyzes olefin hydrogenation (111).

CNDO calculations have been performed on $MeTiCl_3-C_2H_4$ as a model for Ziegler-Natta polymerization (112). The products from Cp_2TiCl_2 and AlR_3 or AlR_2Cl have been studied by ESR and as C_2H_4 polymerization catalysts (113). $CpTi(OSiMe_3)_3$ plus MeMgI catalyzes codimerization of ethylene with butadiene giving mostly vinyl-cyclobutane (114), and with isoprene, giving acyclic C_7 dienes (115). Ti(OBu)₄ plus AlEt₃ catalyzes oligomerization of vinyl-

trimethylsilane (116), as well as codimerization of CH₂=CHSi(OMe)₃ with olefins (117).

Deposition of Zr atoms in alkane matrices followed by warming affords black solids which on hydrolysis give H₂ and alkanes; for example, neopentane leads to formation of .25 moles neopentane-d1 after treatment with D₂O, plus smaller amounts of butanes, propane, ethane, and methane, all polydeuterated, and .8 moles HD. These results indicate 2r atoms cleave C-H and C-C bonds in the alkane Ti shows some reactivity; all other metals are essentially matrix. inert (118). Condensation of Ti vapor with quadricyclane gave little isomerization, in contrast to some other metals (119).

(C₆H₆)₂Ti deoxygenates ketones, allylic and benzylic alcohols, and epoxides at 80°; products are generally olefins (PhCH2OH gives toluene and some biphenyl) (120). Irradiation of heptane-2,6-dione in CH₃OH with TiCl₄ gives frontalin (121);

Dienes are cyclized in the presence of TiCl₄; e.g. (122);

PdCl2-catalyzed carbonylation of nitrobenzene is affected by additives such as Cp₂TiCl₂ (123). It is not clear whether any of the foregoing involve actual organometallic intermediates.

REFERENCES

- 1 H. Miyazaki, Y. Ogino and K. Nakamura, Chitaniumu Jirukoniumu, 27 (1979) 79; Chem. Abstr., 91 (1979) 211451.
- 2 T. A. Ballantine and C. D. Schmulbach, J. Organometal, Chem., 164 (1979) 381.
- 3 D. J. Sikora, M. D. Rausch, R. D. Rogers and J. L. Atwood, J. Am. Chem. Soc., 101 (1979) 5079.
- 4 I. Fragala, E. Ciliberto and J. L. Thomas, J. Organometal. Chem., 175 (1979) C25.
- 5 P. T. Wolczanski, R. S. Threlkel and J. E. Bercaw, J. Am. Chem. Soc., 101 (1979) 218. 6 W.-K. Wong, W. Tam, C. E. Strouse and J. A. Gladysz, J. Chem.
- Soc., Chem. Commun., (1979) 530.
- 7 G. Fachinetti, C. Floriani, A. Chiesi-Villa and C. Guastini, J. Am. Chem. Soc., 101 (1979) 1767.

- 8 J. D. Zeinstra, J. H. Teuben and F. Jellinek, J. Organometal. Chem., 170 (1979) 39. 9 J. Jeffery, M. F. Lappert and P. I. Riley, J. Organometal. Chem., 181 (1979) 25. 10 S. Rummel and M. Wahren, Z. Chem., 19 (1979) 294. 11 T. P. M. Beelen and C. P. J. Rummens, Rec. Trav. Chim., 98 (1979) 8. 12 H.H. Brintzinger, J. Organometal. Chem., 171 (1979) 337. 13 K. I. Gell and J. Schwartz, J. Chem. Soc., Chem. Commun., (1979) 244. 14 G. J. Erskine, J. Hartgerink, E. L. Weinberg and J. D. McCowan, J. Organometal. Chem., 170 (1979) 51. 15 G. A. Razuvaev, V. P. Marin and Yu. A. Andrianov, J. Organometal. Chem., 174 (1979) 67. 16 P. E. Matkovskii, L. I. Chernaya and F. S. Dyachkovskii, Dokl. Akad. Nauk SSSR, 244 (1979) 1351. 17 G. Erker and K. Kropp, J. Am. Chem. Soc., 101 (1979) 3659. 18 B. Akermark and A. Ljungquist, J. Organometal. Chem., 182 (1979) 47. 19 B. Åkermark and A. Ljungquist, J. Organometal. Chem., 182 (1979) 59. 20 M. F. Lappert, P. I. Riley and P. I. W. Yarrow, J. Chem. Soc., Chem. Commun., (1979) 305. 21 M. Kira, H. Bock, H. Umino and H. Sakurai, J. Organometal. Chem., 173 (1979) 39. 22 G. A. Razuvaev, L. I. Vyshinskaya, G. A. Vasileva and A. V. Malysheva, Dolk. Akad. Nauk SSSR, 243 (1978) 1212. 23 G. A. Razuvaev, V. N. Latyaeva, L. I. Vishinskaya and T. P. Samarina, J. Organometal.Chem., 164 (1979) 41. 24 O. M. Khodevich, L. F. Rybakova, K. A. Kocheshkov and I. V. Karandi, Zh. Obshch. Khim., 48 (1978) 2133. 25 E. J. M. deBoer and J. H. Teuben, J. Organometal. Chem., 166 (1979) 193. 26 F. van Bolhuis, E. J. M. deBoer and J. H. Teuben, J. Organometal. Chem., 170 (1979) 299. 27 E. J. M. deBoer, L. C. ten Cate, A. G. J. Staring and J. H. Teuben, J. Organometal. Chem., 181 (1979) 61. 28 M. F. Lappert, N. T. Luong-thi and C. R. C. Milne, J. Organometal. Chem., 174 (1979) C35. 29 P. T. Wolczanski and J. E. Bercaw, J. Am. Chem. Soc., 101 (1979) 6450. 30 M. Benham-Dehkordy, B. Crociani, M. Nicolini and R. L. Richards, J. Organometal. Chem., 181 (1979) 69. 31 A. Dormond, C. Moise, A. Dahchour and J. Tirouflet, J. Organometal. Chem., 177 (1979) 181. 32 A. Dormond, C. Moise, A. Dahchour and J. Tirouflet, J. Organometal. Chem., 168 (1979) C53. 33 A. Dormond, C. Moise, A. Dahchour, J. C. Leblanc and J. Tirouflet, J. Organometal. Chem., 177 (1979) 191. 34 F. N. Tebbe, G. W. Parshall and D. W. Ovenall, J. Am. Chem. Soc., 101 (1979) 5047.
- 35 J. Holton, M. F. Lappert, D. G. H. Ballard, R. Pearce, J. L. Atwood and W. E. Hunter, J. Chem. Soc., Dalton Trans., (1979) 45.
- 36 R. A. Anderson, Inorg. Chem., 18 (1979) 1724.
- 37 R. A. Anderson, Inorg. Chem., 18 (1979) 2928.
- 38 D. J. Cardin and R. J. Norton, J. Chem. Soc., Chem. Commun., (1979) 513.
- 39 A. G. Osborne and R. H. Whiteley, J. Organometal. Chem., 181 (1979) 425.
- 40 S.-S. Chen and Y.-Y. Liu, Hua Hsueh Tung Pao, (1978) 275; Chem. Abstr., 90 (1979) 104083.

41 E. M. Brainina and M. Kh. Minacheva, Izv. Akad. Nauk SSSR, Ser. Khim., (1978) 1676. H. Sakurai and H. Imino, Jap. Patent 79 73,759; Chem. Abstr., 42 91 (1979) 141000. 43 R. Jimenez, M. C. Barral, V. Moreno and A. Santos, J. Organometal. Chem., 174 (1979) 281. R. Jimenez, M. C. Barral, V. Moreno and A. Santos, J. Organometal. Chem., 182 (1979) 353. 45 M. Ciriano, J. A. K. Howard, J. L. Spencer, F. G. A. Stone and H. Wadepohl, J. Chem. Soc., Dalton Trans., (1979) 1749. 46 M. Hotokka and P. Pyykkö, J. Organometal. Chem., 174 (1979) 269. 47 D. L. Thorn and R. Hoffmann, Nouv. J. Chim., 3 (1979) 39.
48 T. R. B. Jones, J. M. Miller, S. A. Gardner and M. P. Rausch, Can. J. Chem., 57 (1979) 335. 49 R. F. Jordan and J. R. Norton, J. Am. Chem. Soc., 101 (1979) 4853. 50 G. P. Pez, C. F. Putnik, S. L. Suib and G. D. Stucky, J. Am. Chem. Soc., 101 (1979) 6933. 51 J. A. Smith, J. van Seyerl, G. Huttner and H. H. Brintzinger, J. Organometal. Chem., 173 (1979) 175. 52 P. Etievant, B. Gautheron and G. Tainturier, Bull. Soc. Chim. France, Part II, (1978) 292. 53 P. C. Wailes and H. Weigold, Inorg. Syn., 19 (1979) 223. 54 K. Chandra, R. K. Sharma, B. S. Garg and R. P. Singh, Inorg. Chim. Acta, 37 (1979) 125. 55 A. K. Holliday, P. H. Makin and R. J. Puddephatt, J. Chem. Soc., Dalton Trans., (1979) 228. 56 S. J. Anderson, D. S. Brown and K. J. Finney, J. Chem. Soc., Dalton Trans., (1979) 152. 57 G. K. Parashar, P. C. Bharara and R. C. Mehrotra, Z. Naturforsch, 34B (1979) 109. 58 G. Fachinetti, C. Biran, C. Floriani, A. Chiesi-Villa and C. Gustini, J. Chem. Soc., Dalton Trans., (1979) 792. 59 M. Pasquali, C. Floriani, A. Chiesi-Villa and C. Guastini, J. Am. Chem. Soc., 101 (1979) 4740. 60 M. Kh. Minacheva, L. A. Fedorov and E. M. Brainina, Izv. Akad. Nauk SSSR, Ser. Khim., (1978) 2645. 61 O. N. Suvarova, V. V. Sharutin and G. A. Domrachev, Str. Svoistva Primen. β -Diketonatov. Met., 3rd 1977, (1978) 132; Chem. Abstr., 91 (1979) 157839. 62 M. Basso Bert and D. Gervais, J. Organometal. Chem., 165 (1979) 209. 63 K. Döppert, J. Organometal. Chem., 178 (1979) C3. 64 W. G. Klemperer and W. Shum, J. Chem. Soc., Chem. Commun., (1979) 60. 65 J. L. Peterson, J. Organometal. Chem., 166 (1979) 179. 66 J. Besancon and D. Camboli, C. R. Acad. Sci., Ser. C, 288 (1979) 121. 67 J. Besancon, D. Camboli, B. Trimaille, M. Colette and J. Tirouflet, C. R. Acad. Sci., Ser. C., 287 (1978) 573. 68 M. Moran and V. Fernandez, J. Organometal. Chem., 165 (1979) 215. 69 G. A. Razuvaev, L. I. Vyshinskaya, G. A. Vasileva, V. N. Latyaeva, S. Ya. Timoshenko and N. L. Ermolaev, Izv. Akad. Nauk SSSR, Ser. Khim., (1978) 2584. 70 B. Bhushan, I. P. Mittal, G. R. Chatwal and N. K. Kaushik, J. Inorg. Nucl. Chem., 41 (1979) 159. 71 N. R. Kaushik, B. Bhushan and G. R. Chatwal, Z. Naturforsch, 34B (1979) 949. 72 G. Gupta, R. Sharan and R. N. Kapoor, Indian J. Chem., 18A (1979) 56.

73 A. Dormond, T. Kolavudh and J. Tirouflet, J. Organometal. Chem., 165 (1979) 319. 74 A. Dormond, T. Kolavudh and J. Tirouflet, J. Organometal. Chem., 164 (1979) 317. 75 H. Schnutenhaus and H. H. Brintzinger, Angew. Chem., 91 (1979) 837; Angew. Chem. Int. Ed. Engl., 18 (1979) 777. 76 N. E. Schore, J. Am. Chem. Soc., 101 (1979) 7410. 77 P. Jutzi and M. Kuhn, J. Organometal. Chem., 173 (1979) 221. 78 P. Jutzi and A. Seufert, J. Organometal. Chem., 169 (1979) 373. 79 A. M. McPherson, B. F. Fieselmann, D. L. Lichtenberger, G. L. McPherson and G. D. Stucky, J. Am. Chem. Soc., 101 (1979) 3425.
80 D. R. Corbin, L. C. Francesconi, D. N. Hendrickson and G. D. Stucky, Inorg. Chem., 18 (1979) 3069. 81 L. C. Francesconi, D. R. Corbin, D. N. Hendrickson and G. D. Stucky, Inorg. Chem., 18 (1979) 3074. 82 Z.-T. Tsai and C. H. Brubaker, J. Organometal. Chem., 166 (1979) 199. 83 J. R. Blickensderfer, R. J. Hoxmaier and H. D. Kaesz, Inorg. Chem., 18 (1979) 3606. 84 H. Köpf and P. Köpf-Maier, Angew. Chem., 91 (1979) 509; Angew. Chem. Int. Ed. Engl., 18 (1979) 477. 85 R. Benn and G. Wilke, J. Organometal. Chem., 174 (1979) C38. 86 R. P. Beatty, S. Datta and S. S. Wreford, Inorg. Chem., 18 (1979) 3139. 87 S. Datta, S. S. Wreford, R. P. Beatty and T. J. McNeese, J. Am. Chem. Soc., 101 (1979) 1053. 88 N. A. Venediktova, V. S. Fedorov and E. N. Kropacheva, 13 Vses. Chugaev. Soveshch. Pokhimii Kompleks, (1978) 75; Chem. Abstr., 90 (1979) 87925. 89 F. G. N. Cloke and M. L. H. Green, J. Chem. Soc., Chem. Commun., (1979) 127. 90 C. G. Francis, H. Huber and G. A. Ozin, J. Am. Chem. Soc., 101 (1979) 6250. .. 91 U. Thewalt and F. Osterle, J. Organometal. Chem., 172 (1979) 317. 92 K. Mach, H. Antropiusova and J. Polacek, J. Organometal. Chem., 172 (1979) 325. 93 E. L. Muetterties, H. Schaeffer, R. I. Mink, M. Y. Darensbourg, M. Millar, T. Groshens and K. J. Klabunde, Inorg. Chem., 18 (1979) 883. 94 A. T. Pilipenko and V. V. Lukachina, Ukr. Chim. Zh., 45 (1979) 772; Chem. Abstr., 91 (1979) 211517. 95 E. Samuel, G. Labauze and D. Vivien, J. Chem. Soc., Dalton Trans., (1979) 956. 96 D. Braga, A. Ripamonti, D. Savoia, C. Trombini and A. Umani-Ronchi, J. Chem. Soc., Dalton Trans., (1979) 2026. 97 D. B. Carr and J. Schwartz, J. Am. Chem. Soc., 101 (1979) 3521. 98 G. J. Lynch, U. S. Patent 4,147,709; Chem. Abstr., 91 (1979) 20723. 99 E.-I. Negishi, D. E. van Horn, A. O. King and N. Okukado, Synthesis, (1979) 501. 100 B. B. Snider and M. Karras, J. Organometal. Chem., 179 (1979) C37. 101 D. C. Brown, S. A. Nichols, A. B. Gilpin and D. W. Thompson, J. Org. Chem., 44 (1979) 3457. 102 J. J. Barber, C. Willis and G. M. Whitesides, J. Org. Chem., 44 (1979) 3603. 103 E. C. Ashby and S. R. Noding, J. Org. Chem., 44 (1979) 4364. 104 E. C. Ashby and S. R. Noding, J. Organometal. Chem., 177 (1979) 117. 105 G. Dozzi, S. Cucinella and A. Mazzei, J. Organometal. Chem., 164 (1979) 1.

- 106 K. Isagawa, H. Sano, M. Hahori and Y. Otsuji, Chem. Lett., (1979) 1069.
- 107 S. E. Tokareva, V. I. Pergushov, A. L. Kostenko and B. M. Bulychev, Dokl. Akad. Nauk SSSR, 246 (1979) 1384.
- 108 B. M. Bulychev, S. E. Tokareva, G. L. Soloveichick and
- E. V. Evdokimova, J. Organometal. Chem., 179 (1979) 263. 109 E. Cesarotti, R. Ugo and H. B. Kagan, Angew. Chem., 91 (1979)
- 842; Angew. Chem. Int. Ed. Engl., 18 (1979) 779. 110 F. Sato, H. Ishikawa, Y. Takahashi, M. Miura and M. Sata,
- Tet. Lett., (1979) 3745. 111 W. Skupinski, I. Cieslowska and S. Malinowski, J. Organometal. Chem., 182 (1979) C33.
- 112 P. Cassoux, F. Crasnier and J.-F. Labarre, J. Organometal. Chem., 165 (1979) 303.
- 113 J. N. Hay and R. M. S. Obaid, Eur. Polym. J., 14 (1978) 965; Chem. Abstr., 90 (1979) 169058. 114 V. M. Vdovin, A. B. Amerik and V. A. Poletaev, Izv. Akad. Nauk
- SSSR, Ser. Khim., (1978) 2781. 115 A. B. Amerik and V. M. Vdovin, Izv. Akad. Nauk SSSR, Ser.
- Khim., (1979) 907. 116 V. P. Yurev, G. A. Gailyunas, F. G. Yusupova, G. V. Nurtdinova,
- E. S. Monakhova and G. A. Tolstikov, J. Organometal. Chem., 169 (1979) 19.
- 117 G. V. Nurtdinova, F. G. Yusupova, E. S. Monakhova, G. A. Gailyunas, V. D. Sheludyakov and V. P. Yurev, Izv. Akad. Nauk SSSR, Ser. Khim., (1979) 1416.
- 118 R. J. Remick, T. A. Asunta and P. S. Skell, J. Am. Chem. Soc., 101 (1979) 1320.
- 119 J. A. Gladysz, J. G. Fulcher, R. C. Ugolick, A. J. L. Hanlon and A. B. Bocarsly, J. Am. Chem. Soc., 101 (1979) 3388.
- 120 H. Ledon, I. Tkatchenko and D. Young, Tet. Lett., (1979) 173.
- 121 T. Sato, S. Yamaguchi and H. Kaneko, Tet. Lett., (1979) 1863.
- 122 T. Saito, A. Itoh, K. Oshima and H. Nozaki, Tet. Lett., (1979) 3519.
- 123 B. K. Nefedov, V. N. Latyaeva, Yu. I. Dergunov, A. N. Lineva and V. I. Manov-Yuvenskii, Dokl. Akad. Nauk SSSR, 246 (1979) 118.